z-logo
Premium
A genomically/chemically complete module for synthesis of lipid membrane in a minimal cell
Author(s) -
Castellanos Mariajose,
Kushiro Keiichiro,
Lai Samuel K.,
Shuler Michael L.
Publication year - 2006
Publication title -
biotechnology and bioengineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.136
H-Index - 189
eISSN - 1097-0290
pISSN - 0006-3592
DOI - 10.1002/bit.21251
Subject(s) - membrane , chemostat , cell , cell growth , biology , cell membrane , biochemistry , chemistry , biophysics , bacteria , genetics
A minimal cell is a hypothetical cell defined by the essential functions required for life. We have developed a module for the synthesis of membrane precursors for a mathematical minimal cell model. This module describes, with chemical and genomic detail the production of the constituents required to build a cell membrane and identifies the corresponding essential genes. Membranes allow selective nutrient passage, harmful substance exclusion, and energy generation. Bacterial membrane components range from lipids to fatty acids with embedded proteins and are structurally similar to eukaryotic cell membranes. Membranes are dynamic structures and experimental analyses show great variations in bacterial membrane composition. The flexibility of the model is such that different membrane compositions could be obtained in response to simulated changes in culture conditions. The model's predictions are in close agreement with the observed biological trends. The model's predictions correspond well with the experimental values of total lipid content in cells grown in chemostat culture, but less well with data from batch growth. Cell shape and size results agree especially well for data for growth rate relative to maximum growth rate larger than 0.5; and DNA, RNA, and protein predictions are consistent with experimental observations. A better understanding of the simplest bacterial membrane should lead to insights on the more complex behavior of membranes of higher species as well as identification of potential targets for antimicrobials. Biotechnol. Bioeng. 2007;97: 397–409. © 2006 Wiley Periodicals, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here