Premium
Dual substrate biodegradation of a nonionic surfactant and pentachlorophenol by Sphingomonas chlorophenolica RA2
Author(s) -
Bielefeldt Angela R.,
Cort Todd
Publication year - 2005
Publication title -
biotechnology and bioengineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.136
H-Index - 189
eISSN - 1097-0290
pISSN - 0006-3592
DOI - 10.1002/bit.20365
Subject(s) - biodegradation , pentachlorophenol , substrate (aquarium) , chemistry , pulmonary surfactant , degradation (telecommunications) , organic chemistry , environmental chemistry , biochemistry , biology , ecology , telecommunications , computer science
Abstract The simultaneous biodegradation of the nonionic surfactant Tween 20 (Tw20) and pentachlorophenol (PCP) by Sphingomonas chlorophenolica sp. Strain RA2 (RA2) was measured. As a sole substrate, Tw20 biodegradation was best described by the Contois kinetic model. During concurrent biodegradation of Tw20 and PCP, the biodegradation rates of Tw20 were not significantly affected by 50 or 100 mg/L PCP, but were significantly inhibited by 500 mg/L PCP. Decreases in cell yield in the presence of PCP suggest that PCP was acting as an uncoupler. Cultures were pre‐grown on PCP or Tw20 before degradation of PCP to evaluate enzyme induction effects, and long lags before PCP biodegradation after growth on Tw20 occurred. Although biokinetic models could accurately describe some of the data sets of RA2 growth and Tw20 and PCP degradation, finding a single set of kinetic parameters that predicted all dual substrate tests was not achieved. The complicating factors to modeling PCP and Tw20 interactions are described and may be more widely applicable to the biodegradation of toxic organic compounds in the presence of a biodegradable surfactant. ©2005 Wiley Periodicals, Inc.