Premium
Pulsed electric field stimulates plant secondary metabolism in suspension cultures of Taxus chinensis *
Author(s) -
Ye Hong,
Huang LinLing,
Chen ShuDe,
Zhong JianJiang
Publication year - 2004
Publication title -
biotechnology and bioengineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.136
H-Index - 189
eISSN - 1097-0290
pISSN - 0006-3592
DOI - 10.1002/bit.20266
Subject(s) - elicitor , secondary metabolite , metabolite , secondary metabolism , plant cell , primary metabolite , sucrose , chemistry , extracellular , cell culture , food science , taxus , metabolism , botany , biochemistry , biology , biosynthesis , enzyme , genetics , gene
The effects of pulsed electric field (PEF) on growth and secondary metabolite production by plant cell culture were investigated by using suspension cultures of Taxus chinensis as a model system. Cultured cells in different growth phases were exposed to a PEF (50 Hz, 10 V/m) for various periods of time. A significant increase in intracellular accumulation of taxuyunnanine C (Tc), a bioactive secondary metabolite, was observed by exposing the cells in the early exponential growth phase to a 30‐min PEF. The Tc content (i.e., the specific production based on dry cell weight) was increased by 30% after exposure to PEF, without loss of biomass, compared with the control. The combination of PEF treatment and sucrose feeding proved useful for improving secondary metabolite formation. Production levels of reactive oxygen species, extracellular Tc, and phenolics were all increased, whereas cell capacitance was decreased with PEF treatment. The results show that PEF induced a defense response of plant cells and may have altered the cell/membrane's dielectric properties. PEF, an external stimulus or stress, is proposed as a promising new abiotic elicitor for stimulating secondary metabolite biosynthesis in plant cell cultures. © 2004 Wiley Periodicals, Inc.