z-logo
Premium
Rapid chromatography for evaluating adsorption characteristics of cellulase binding domain mimetics
Author(s) -
Mosier Nathan S.,
Wilker Jonathan J.,
Ladisch Michael R.
Publication year - 2004
Publication title -
biotechnology and bioengineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.136
H-Index - 189
eISSN - 1097-0290
pISSN - 0006-3592
DOI - 10.1002/bit.20104
Subject(s) - cellulase , cellulose , chemistry , adsorption , hydrolysis , organic chemistry , substrate (aquarium) , lignocellulosic biomass , enzymatic hydrolysis , chromatography , oceanography , geology
The cost of cellulolytic enzymes is one barrier to the economic production of fermentable sugars from lignocellulosic biomass for the production of fuels and chemicals. One functional characteristic of cellulolytic enzymes that improves reaction kinetics over mineral acids is a cellulose binding domain that concentrates the catalytic domain to the substrate surface. We have identified maleic acid as an attractive catalytic domain with p K a and dicarboxylic acid structure properties that hydrolyze cellulose while producing minimal degradation of the glucose formed. In this study we report results of a rapid chromatographic method to assess the binding characteristics of potential cellulose binding domains for the construction of a synthetic cellulase over a wide range of temperatures (20° to 120°C). Aromatic, planar chemical structures appear to be key indicators of cellulose adsorption. Indole, the side‐chain of the amino acid tryptophan, has been shown to reversibly adsorb to cellulose at temperatures between 30° and 120°C. Trypan blue, a polyaromatic, planar molecule, was shown to be irreversibly adsorbed to cotton cellulose at temperatures of <120°C on the time scale of the experiments. These results confirm the importance of hydrophobic cellulose and the cellulose‐binding component of cellulolytic enzymes and cellulolytic enzyme mimetics. © 2004 Wiley Periodicals, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here