Premium
Stochastic kinetic analysis of the Escherichia coli stress circuit using σ 32 ‐targeted antisense
Author(s) -
Srivastava R.,
Peterson M. S.,
Bentley W. E.
Publication year - 2001
Publication title -
biotechnology and bioengineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.136
H-Index - 189
eISSN - 1097-0290
pISSN - 0006-3592
DOI - 10.1002/bit.1171
Subject(s) - recombinant dna , sigma factor , sigma , heat shock protein , chaperone (clinical) , escherichia coli , regulator , biology , heat shock , chemistry , microbiology and biotechnology , biochemistry , gene , physics , rna polymerase , medicine , quantum mechanics , pathology
A stochastic Petri net model was developed for simulating the σ 32 stress circuit in E. coli. Transcription factor σ 32 is the principal regulator of the response of E. coli to heat shock. Stochastic Petri net (SPN) models are well suited for kinetics characterization of fluxes in biochemical pathways. Notably, there exists a one‐to‐one mapping of model tokens and places to molecules of particular species. Our model was validated against experiments in which ethanol (inducer of heat shock response) and σ 32 ‐targeted antisense (downward regulator) were used to perturb the σ 32 regulatory pathway. The model was also extended to simulate the effects of recombinant protein production. Results show that the stress response depends heavily on the partitioning of σ 32 within the cell; that is, σ 32 becomes immediately available to mediate a stress response because it exists primarily in a sequestered, inactive form, complexed with chaperones DnaK, DnaJ, and GrpE. Recombinant proteins, however, also compete for chaperone proteins, particularly when folded improperly. Our simulations indicate that when the expression of recombinant protein has a low requirement for DnaK, DnaJ, and GrpE, the overall σ 32 levels may drop, but the level of heat shock proteins will increase. Conversely, when the overexpressed recombinant protein has a strong requirement for the chaperones, a severe response is predicted. Interestingly, both cases were observed experimentally. © 2001 John Wiley & Sons, Inc. Biotechnol Bioeng 75: 120–129, 2001.