Premium
Simple and robust method for estimation of the split between the oxidative pentose phosphate pathway and the Embden‐Meyerhof‐Parnas pathway in microorganisms
Author(s) -
Christensen Bjarke,
Christiansen Torben,
Gombert Andreas Karoly,
Thykaer Jette,
Nielsen Jens
Publication year - 2001
Publication title -
biotechnology and bioengineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.136
H-Index - 189
eISSN - 1097-0290
pISSN - 0006-3592
DOI - 10.1002/bit.1143
Subject(s) - pentose phosphate pathway , metabolic flux analysis , flux (metallurgy) , saccharomyces cerevisiae , biochemistry , chemistry , isotopomers , metabolism , glycolysis , organic chemistry , yeast , molecule
The flux through the oxidative pentose phosphate (PP) pathway was estimated in Bacillus clausii, Saccharomyces cerevisiae , and Penicillium chrysogenum growing in chemostats with [1‐ 13 C]glucose as the limiting substrate. The flux calculations were based on a simple algebraic expression that is valid irrespective of isotope rearrangements arising from reversibilities of the reactions in the PP pathway and the upper part of the Embden‐Meyerhof‐Parnas pathway. The algebraically calculated fluxes were validated by comparing the results with estimates obtained using a numerical method that includes the entire central carbon metabolism. Setting the glucose uptake rate to 100, the algebraic expression yielded estimates of the PP pathway flux in B. clausii, S. cerevisiae, and P. chrysogenum of 20, 42, and 75, respectively. These results are in accordance with the results from the numerical method. The information on the labeling patterns of glucose and the proteinogenic amino acids were obtained using gas chromatography / mass spectrometry, which is a very sensitive technique, and therefore only a small amount of biomass is needed for the analysis. Furthermore, the method developed in this study is fast and readily accessible, as the calculations are based on a simple algebraic expression. © 2001 John Wiley & Sons, Inc. Biotechnol Bioeng 74: 517–523, 2001.