z-logo
Premium
Kinetic analysis of bacterial bioluminescence
Author(s) -
Kelly Christine J.,
Hsiung ChiaJoung,
Lajoie Curtis A.
Publication year - 2002
Publication title -
biotechnology and bioengineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.136
H-Index - 189
eISSN - 1097-0290
pISSN - 0006-3592
DOI - 10.1002/bit.10475
Subject(s) - bioluminescence , pseudomonas fluorescens , substrate (aquarium) , continuous stirred tank reactor , inducer , chemistry , bacterial growth , cofactor , biophysics , enzyme , biochemistry , biology , bacteria , ecology , genetics , gene
Bioluminescence from the lux ‐based bacterial reporter Pseudomonas fluorescens HK44 was experimentally investigated under growth substrate‐rich and limiting conditions in batch, continuous stirred tank (CSTR), and turbidostat reactors. A mechanistically based, mathematical model was developed to describe bioluminescence based on 1) production and decay of catalytic enzymes, and 2) reactant cofactor availability. In the model, bioluminescence was a function of inducer, growth substrate, and biomass concentration. A saturational dependence on growth substrate concentration accommodated dependence on cofactor availability and inducer concentration to accommodate enzyme production was incorporated in the model. Under growth substrate and inducer limiting conditions in the batch reactor and CSTR, bioluminescence was found to decrease in response to cellular energy limitations. The effective lux system enzyme decay rate was determined in independent measurements to be 0.35 hr −1 and the model captured most of the bioluminescent behavior, except at long growth times and high cell density. © 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 81: 370–378, 2003.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here