z-logo
Premium
On‐line estimation of the metabolic burden resulting from the synthesis of plasmid‐encoded and heat‐shock proteins by monitoring respiratory energy generation
Author(s) -
Hoffmann Frank,
Rinas Ursula
Publication year - 2001
Publication title -
biotechnology and bioengineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.136
H-Index - 189
eISSN - 1097-0290
pISSN - 0006-3592
DOI - 10.1002/bit.10098
Subject(s) - plasmid , heat shock protein , methionine , recombinant dna , protein biosynthesis , biology , strain (injury) , gel electrophoresis , biochemistry , escherichia coli , chemistry , microbiology and biotechnology , gene , amino acid , anatomy
Human basic fibroblast growth factor (hFGF‐2) was produced in high‐cell density cultures of recombinant Escherichia coli using a temperature‐inducible expression system. The synthesis rates of proteins were followed by two‐dimensional gel electrophoresis of the 35 S‐methionine‐labeled proteom. After temperature induction of hFGF‐2 synthesis, the rate of total protein synthesis per biomass increased by a factor of three, mainly as a result of the additional synthesis of hFGF‐2 and heat‐shock proteins. The synthesis rates of heat‐shock proteins and constitutive plasmid‐encoded proteins increased after the temperature upshift also in the control strain without hFGF‐2 gene but followed time profiles different from the producing strain. The energy demand for the extra synthesis of plasmid‐encoded and heat‐shock proteins resulted in an elevated respiratory activity and, consequently, in a reduction of the growth rate and the biomass yield. A procedure was developed to relate the energy demand for the additional synthesis of these proteins to the generation of energy in the respiratory pathway. Specific energy production was estimated based on on‐line measurable rates of oxygen consumption, or carbondioxide evolution and growth, respectively. In this way, the metabolic burden resulting from the synthesis of plasmid‐encoded and heat‐shock proteins was quantified from on‐line accessible data. © 2001 John Wiley & Sons, Inc. Biotechnol Bioeng 76: 333–340, 2001.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here