z-logo
Premium
Structure–activity studies on magainins and other host defense peptides
Author(s) -
Maloy W. Lee,
Kari U. Prasad
Publication year - 1995
Publication title -
biopolymers
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.556
H-Index - 125
eISSN - 1097-0282
pISSN - 0006-3525
DOI - 10.1002/bip.360370206
Subject(s) - chemistry , host (biology) , computational biology , biophysics , ecology , biology
Abstract Host defense peptides are widely distributed in nature, being found in species from bacteria to humans. The structures of these peptides from insects, horseshoe crabs, frogs, and mammals are known to have the common features of a net cationic charge due to the presence of multiple Arg and Lys residues and in most cases the ability to form amphipathic structures. These properties are important for the mechanism of action that is thougln to be a nonreceptor‐mediated interaction with the anionic phospholipids of the target cell followed by incorporation into the membrane and disruption of the membrane structure. Host defense peptides have been shown to have broad spectrum antimicrobial activity, able to kill most strains of bacteria as well as some fungi, protozoa, and in addition, many types of tumor cells. Specificity for pathogenic cells over host cells is thought to be due to the composition of the cell membranes, with an increased proportion of anionic phospholipids making the pathogen more susceptible and the presence of cholesterol making the host membranes more resistant. Structure–activity relationship studies have been performed on insect cecropins and apidaecins. horseshoe crab tachyplesins and polyphemusins. and the frog magainins. CPFs (caerulein precursor fragments) and PGLa. In general, changes that increased the basicity and stabilized the amphipathic structure have increased the antimicrobial activity: however, as the peptides become more hydrophobic the degree of specificity decreases. One magainin‐2 analogue. MSI‐78. has been developed by Magainin Pharmaceuticals as a topical antiinefective and is presently in clinical trials for the treatment of infected diabetic foot ulcers. © 1994 John Wiley & Sons, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here