Premium
Differential binding of the enantiomers of chloroquine and quinacrine to polynucleotides: Implications for stereoselective metabolism
Author(s) -
Scaria P. V.,
Craig John C.,
Shafer Richard H.
Publication year - 1993
Publication title -
biopolymers
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.556
H-Index - 125
eISSN - 1097-0282
pISSN - 0006-3525
DOI - 10.1002/bip.360330604
Subject(s) - polynucleotide , enantiomer , chemistry , stereochemistry , chloroquine , stereoselectivity , dna , biochemistry , biology , malaria , immunology , catalysis
Interaction of the antimalarial drugs quinacrine and chloroquine with DNA has been studied extensively in order to understand the origin of their biological activity. These studies have shown that they bind to DNA through an intercalative mode and show little sequence specificity. All previous experiments were carried out using the racemic form of these drugs. We have investigated the binding of the enantiomeric forms of quinacrine and chloroquine to synthetic polynucleotides poly (dA‐dT) · poly(dA‐dT) and poly (dG‐dC) · poly(dG‐dC), and found interesting differences in their binding parameters. Quinacrine enantiomers have a much higher binding affinity for the two polynucleotides compared to those of chloroquine. The negative enantiomers were found to have higher binding affinity than the positive ones. The binding constant for the binding of quinacrine (−) to poly(dG‐dC) · poly(dG‐dC) was found to be about 3 times that of quinacrine (+). The differences in these binding affinities were further confirmed by equilibrium dialysis of the complexes of the polynucleotides with the racemic form of the drugs, which resulted in the enrichment of the dialysate with the positive enantiomer. CD spectra of the enantiomers and their polynucleotide complexes are reported. Changes in the fluorescence properties of quinacrine in the presence of the two polynucleotides are also described. Biological implications of these findings are discussed. © 1993 John Wiley & Sons, Inc.