Premium
To achieve self‐assembled collagen mimetic fibrils using designed peptides
Author(s) -
Strawn Rebecca,
Chen FangFang,
Jeet Haven Parminder,
Wong Sam,
ParkArias Anne,
De Leeuw Monique,
Xu Yujia
Publication year - 2018
Publication title -
biopolymers
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.556
H-Index - 125
eISSN - 1097-0282
pISSN - 0006-3525
DOI - 10.1002/bip.23226
Subject(s) - fibril , triple helix , peptide , chemistry , sequence (biology) , helix (gastropod) , peptide sequence , biophysics , crystallography , stereochemistry , biochemistry , gene , biology , ecology , snail
It has proven challenging to obtain collagen‐mimetic fibrils by protein design. We recently reported the self‐assembly of a mini‐fibril showing a 35 nm, D ‐period like, axially repeating structure using the designed triple helix Col108. Peptide Col108 was made by bacterial expression using a synthetic gene; its triple helix domain consists of three pseudo‐identical units of amino acid sequence arranged in tandem. It was postulated that the 35 nm d ‐period of Col108 mini‐fibrils originates from the periodicity of the Col108 primary structure. A mutual staggering of one sequence unit of the associating Col108 triple helices can maximize the inter‐helical interactions and produce the observed 35 nm d ‐period. Based on this unit‐staggered model, a triple helix consisting of only two sequence units is expected to have the potential to form the same d ‐periodic mini‐fibrils. Indeed, when such a peptide, peptide 2U108, was made it was found to self‐assemble into mini‐fibrils having the same d ‐period of 35 nm. In contrast, no d ‐periodic mini‐fibrils were observed for peptide 1U108, which does not have long‐range repeating sequences in its primary structure. The findings of the periodic mini‐fibrils of Col108 and 2U108 suggest a way forward to create collagen‐mimetic fibrils for biomedical and industrial applications.