Premium
Modeling interactions between a β‐O‐4 type lignin model compound and 1‐allyl‐3‐methylimidazolium chloride ionic liquid
Author(s) -
Zhu Youtao,
Yan Jing,
Liu Chengbu,
Zhang Dongju
Publication year - 2017
Publication title -
biopolymers
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.556
H-Index - 125
eISSN - 1097-0282
pISSN - 0006-3525
DOI - 10.1002/bip.23022
Subject(s) - chemistry , ionic liquid , hydrogen bond , dissolution , lignin , intramolecular force , monomer , intermolecular force , dimer , stacking , molecular dynamics , chloride , ion , computational chemistry , molecule , inorganic chemistry , organic chemistry , polymer , catalysis
Aiming at understanding the molecular mechanism of the lignin dissolution in imidazolium‐based ionic liquids (ILs), this work presents a combined quantum chemistry (QC) calculation and molecular dynamics (MD) simulation study on the interaction of the lignin model compound, veratrylglycerol‐ β ‐guaiacyl ether (VG) with 1‐allyl‐3‐methylimidazolium chloride ([Amim]Cl). The monomer of VG is shown to feature a strong intramolecular hydrogen bond, and its dimer is indicated to present important π‐π stacking and intermolecular hydrogen bonding interactions. The interactions of both the cation and anion of [Amim]Cl with VG are shown to be stronger than that between the two monomers, indicating that [Amim]Cl is capable of dissolving lignin. While Cl – anion forms a hydrogen‐bonded complex with VG, the imidazolium cation interacts with VG via both the π‐π stacking and intermolecular hydrogen bonding. The calculated interaction energies between VG and the IL or its components (the cation, anion, and ion pair) indicate the anion plays a more important role than the cation for the dissolution of lignin in the IL. Theoretical results provide help for understanding the molecular mechanism of lignin dissolution in imidazolium‐based IL. The theoretical calculations on the interaction between the lignin model compound and [Amim]Cl ionic liquid indicate that the anion of [Amim]Cl plays a more important role for lignin dissolution although the cation also makes a substantial contribution.