Premium
Solution and solid state conformational preferences of a family of cyclic disulphide bridged tetrapeptides
Author(s) -
Berger Nadja,
Li Fee,
Mallick Bert,
Brüggemann J. Thomas,
Sander Wolfram,
Merten Christian
Publication year - 2017
Publication title -
biopolymers
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.556
H-Index - 125
eISSN - 1097-0282
pISSN - 0006-3525
DOI - 10.1002/bip.22986
Subject(s) - chemistry , intramolecular force , stereocenter , hydrogen bond , stereochemistry , cyclic peptide , solid state , solvent polarity , solvent , crystallography , molecule , peptide , organic chemistry , biochemistry , enantioselective synthesis , catalysis
A set of cyclic tetrapeptides of the general form cyclo (Boc‐Cys‐Pro‐ X ‐Cys‐OMe) with X being L‐ / D‐Ala , L‐ / D‐Val , and L‐ / D‐Trp was synthesized. These peptides serve as model systems for structure elucidation in solution and feature a variety of structural motifs — namely a β‐turn with intramolecular hydrogen bonding interactions, cis / trans isomerism, and a disulphide bond. In this work, we performed a comprehensive structural analysis focussing on their β‐turn conformational preferences using NMR, VCD, and Raman spectroscopy. Our results provide evidence for a strong influence of a single stereocenter on the structures of the peptides whereas solvent polarity does not significantly affect them. Additionally, the solid state conformational preferences were studied by crystal structure analysis. Overall, a general trend for the conformational preferences of this set of peptides can be concluded from the results of the complementary investigations.