z-logo
Premium
Influence of precipitating agents on thermodynamic parameters of protein crystallization solutions
Author(s) -
Stavros Philemon,
Saridakis Emmanuel,
Nounesis George
Publication year - 2016
Publication title -
biopolymers
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.556
H-Index - 125
eISSN - 1097-0282
pISSN - 0006-3525
DOI - 10.1002/bip.22860
Subject(s) - chemistry , crystallization , thermodynamics , protein crystallization , organic chemistry , physics
X‐ray crystallography is the most powerful method for determining three‐dimensional structures of proteins to (near‐)atomic resolution, but protein crystallization is a poorly explained and often intractable phenomenon. Differential Scanning Calorimetry was used to measure the thermodynamic parameters (Δ G , Δ H , Δ S ) of temperature‐driven unfolding of two globular proteins, lysozyme, and ribonuclease A, in various salt solutions. The mixtures were categorized into those that were conducive to crystallization of the protein and those that were not. It was found that even fairly low salt concentrations had very large effects on thermodynamic parameters. High concentrations of salts conducive to crystallization stabilized the native folded forms of proteins, whereas high concentrations of salts that did not crystallize them tended to destabilize them. Considering the Δ H and TΔS contributions to the Δ G of unfolding separately, high concentrations of crystallizing salts were found to enthalpically stabilize and entropically destabilize the protein, and vice‐versa for the noncrystallizing salts. These observations suggest an explanation, in terms of protein stability and entropy of hydration, of why some salts are good crystallization agents for a given protein and others are not. This in turn provides theoretical insight into the process of protein crystallization, suggesting ways of predicting and controlling it. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 642–652, 2016.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here