z-logo
Premium
RNA approaches the B ‐form in stacked single strand dinucleotide contexts
Author(s) -
Sedova Ada,
Banavali Nilesh K.
Publication year - 2016
Publication title -
biopolymers
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.556
H-Index - 125
eISSN - 1097-0282
pISSN - 0006-3525
DOI - 10.1002/bip.22750
Subject(s) - chemistry , rna , nucleic acid , ribose , dna , nucleotide , duplex (building) , stacking , nucleic acid structure , stereochemistry , base pair , nucleobase , crystallography , biochemistry , enzyme , organic chemistry , gene
Duplex RNA adopts an A‐form structure, while duplex DNA interconverts between the A‐ and B‐forms depending on the environment. The C2′‐endo sugar pucker seen in B‐form DNA can occur infrequently in ribose sugars as well, but RNA is not understood to assume B‐form conformations. Through analysis of over 45,000 stacked single strand dinucleotide (SSD) crystal structure conformations, this study demonstrates that RNA is capable of adopting a wide conformational range between the canonical A‐ and B‐forms at the localized SSD level, including many B‐form‐like conformations. It does so through C2′‐endo ribose conformations in one or both nucleotides, and B‐form‐like neighboring base stacking patterns. As chemical reactions on nucleic acids involve localized changes in chemical bonds, the understanding of how enzymes distinguish between DNA and RNA nucleotides is altered by the energetic accessibility of these rare B‐form‐like RNA SSD conformations. The existence of these conformations also has direct implications in parametrization of molecular mechanics energy functions used extensively to model nucleic acid behavior., 2016. © 2015 Wiley Periodicals, Inc. Biopolymers 105: 65–82, 2016

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here