z-logo
Premium
Ligand entry into the calyx of β‐lactoglobulin
Author(s) -
Bello Martiniano,
GarcíaHernández Enrique
Publication year - 2014
Publication title -
biopolymers
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.556
H-Index - 125
eISSN - 1097-0282
pISSN - 0006-3525
DOI - 10.1002/bip.22454
Subject(s) - chemistry , ligand (biochemistry) , molecular dynamics , molecule , lipocalin , crystallography , biophysics , stereochemistry , receptor , computational chemistry , biochemistry , organic chemistry , biology
Although the thermodynamic principles that control the binding of drug molecules to their protein targets are well understood, the detailed process of how a ligand reaches a protein binding site has been an intriguing question over decades. The short time interval between the encounter between a ligand and its receptor to the formation of the stable complex has prevented experimental observations. Bovine β‐lactoglobulin (βlg) is a lipocalin member that carries fatty acids (FAs) and other lipids in the cellular environment. Βlg accommodates a FA molecule in its highly hydrophobic cavity and exhibits the capability of recognizing a wide variety of hydrophobic ligands. To elucidate the ligand entry process on βlg, we report molecular dynamics simulations of the encounter between palmitate (PA) or laurate (LA) and βlg. Our results show that residues localized in loops at the cavity entrance play an important role in the ligand penetration process. Analysis of the short‐term interaction energies show that the forces operating on the systems lead to average conformations very close to the crystallographic holo‐forms. Whereas the binding free energy analysis using the molecular mechanics Generalized Born surface area method shows that these conformations were thermodynamically favorable. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 744–757, 2014.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here