Premium
Cell proliferation and cell sheet detachment from the positively and negatively charged nanocomposite hydrogels
Author(s) -
Liu Dan,
Wang Tao,
Liu Xinxing,
Tong Zhen
Publication year - 2014
Publication title -
biopolymers
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.556
H-Index - 125
eISSN - 1097-0282
pISSN - 0006-3525
DOI - 10.1002/bip.22273
Subject(s) - self healing hydrogels , chemistry , monomer , methacrylate , swelling , copolymer , polymer chemistry , cationic polymerization , nanocomposite , ionic bonding , chemical engineering , sulfonic acid , polyelectrolyte , aqueous solution , ionic strength , polymer , organic chemistry , ion , engineering
The charged nanocomposite hydrogels (NC gels) were synthesized by copolymerization of positively or negatively chargeable monomer with N‐isopropylacrylamide (NIPAm) in the aqueous suspension of hectorite clay. The ionic NC gels preserved the thermo‐responsibility with the phase‐transition temperature below 37°C. The L929 cell proliferation was sensitive to charge polarity and charge density. As compared to the PNIPAm NC gel, the cationic NC gels with <5 mol % of 2‐(dimethylamino)ethyl methacrylate (DMAEMA) showed improved cell proliferation, whereas the cells grew slowly on the gels with negatively charged 2‐acrylamido‐2‐methylpropane sulfonic acid (AMPSNa). By lowering temperature, rapid cell sheet detachment was observed from the surface of ionic NC gels with 1 mol % of ionizable monomers. However, lager amount of AMPSNa or DMAEMA did not support rapid cell sheet detachment, probably owing to the adverse swelling effects and/or enhanced electrostatic attraction. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 58–65, 2014.