Premium
DNA meter: Energy tunable, quantitative hybridization assay
Author(s) -
Braunlin William,
Völker Jens,
Plum G. Eric,
Breslauer Kenneth J.
Publication year - 2013
Publication title -
biopolymers
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.556
H-Index - 125
eISSN - 1097-0282
pISSN - 0006-3525
DOI - 10.1002/bip.22213
Subject(s) - dna , chemistry , false positive paradox , duplex (building) , hybridization probe , analyte , biophysics , biological system , nanotechnology , combinatorial chemistry , biochemistry , biology , materials science , chromatography , computer science , machine learning
We describe a novel hybridization assay that employs a unique class of energy tunable, bulge loop‐containing competitor strands (C*) that hybridize to a probe strand (P). Such initial "pre‐binding" of a probe strand modulates its effective "availability" for hybridizing to a target site (T). More generally, the assay described here is based on competitive binding equilibria for a common probe strand (P) between such tunable competitor strands (C*) and a target strand (T). We demonstrate that loop variable, energy tunable families of C*P complexes exhibit enhanced discrimination between targets and mismatched targets, thereby reducing false positives/negatives. We refer to a C*P complex between a C* competitor single strand and the probe strand as a “tuning fork,” since the C* strand exhibits branch points (forks) at the duplex‐bulge interfaces within the complex. By varying the loop to create families of such “tuning forks,” one can construct C*P “energy ladders” capable of resolving small differences within the target that may be of biological/functional consequence. The methodology further allows quantification of target strand concentrations, a determination heretofore not readily available by conventional hybridization assays. The dual ability of this tunable assay to discriminate and quantitate targets provides the basis for developing a technology we refer to as a “DNA Meter.” Here we present data that establish proof‐of‐principle for an in solution version of such a DNA Meter. We envision future applications of this tunable assay that incorporate surface bound/spatially resolved DNA arrays to yield enhanced discrimination and sensitivity. © 2012 Wiley Periodicals, Inc. Biopolymers 99: 408–417, 2013.