z-logo
Premium
β‐Sheet aggregation of kisspeptin‐10 is stimulated by heparin but inhibited by amphiphiles
Author(s) -
Nielsen Søren B.,
Franzmann Magnus,
Basaiawmoit Rajiv V.,
Wimmer Reinhard,
Mikkelsen Jens D.,
Otzen Daniel E.
Publication year - 2010
Publication title -
biopolymers
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.556
H-Index - 125
eISSN - 1097-0282
pISSN - 0006-3525
DOI - 10.1002/bip.21434
Subject(s) - chemistry , heparin , random coil , micelle , peptide , biophysics , kisspeptin , amphiphile , circular dichroism , stereochemistry , biochemistry , polymer , receptor , organic chemistry , aqueous solution , copolymer , biology
The murine 10‐residue neurohormone kisspeptin (YNWNSFGLRY) is an important regulator of reproductive behavior and gonadotrophin secretion. It is known to form a random coil in solution, but undergoes a structural change in the presence of membranes although the nature of this change is not fully determined. The peptide's conformational versatility raises the question whether it is also able to form ordered aggregates under physiological conditions, which might be relevant as a storage mechanism. Here we show that heparin induces kisspeptin to form β‐sheet rich amyloid aggregates both at neutral (pH 7.0) and slightly acidic (pH 5.2) conditions. Addition of heparin leads to aggregation after a certain lag phase, irrespective of the time of addition of heparin, indicating that heparin is needed to facilitate the formation of fibrillation nuclei. Aggregation is completely inhibited by submicellar concentrations of zwitterionic and anionic surfactants. Unlike previous reports, our NMR data do not indicate persistent structure in the presence of zwitterionic surfactant micelles. Thus kisspeptin can aggregate under physiologically relevant conditions provided heparin is present, but the process is highly sensitive to the presence of amphiphiles, highlighting the very dynamic nature of the peptide conformation and suggesting that kisspeptin aggregation is a biologically regulatable process. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 678–689, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here