Premium
Human tropoelastin sequence: Dynamics of polypeptide coded by exon 6 in solution
Author(s) -
Tintar D.,
Samouillan V.,
Dandurand J.,
Lacabanne C.,
Pepe A.,
Bochicchio B.,
Tamburro Antonio M.
Publication year - 2009
Publication title -
biopolymers
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.556
H-Index - 125
eISSN - 1097-0282
pISSN - 0006-3525
DOI - 10.1002/bip.21282
Subject(s) - chemistry , solvent , exon , dielectric , molecular dynamics , preprint , tropoelastin , crystallography , biophysics , organic chemistry , biochemistry , computational chemistry , materials science , gene , physics , optoelectronics , quantum mechanics , biology , extracellular matrix
Abstract Calorimetric studies were performed on exon 6 in powdered form and in solution [water and 2,2,2‐trifluoroethanol (TFE), a structure‐inducing solvent or cosolvent]. Dynamic dielectric spectroscopy (DDS) analyses were realized in water and 20% TFE. The major role of solvent–peptide organization is evidenced with these techniques. Calorimetric measurements reveal the structural water organization around the polypeptide as well as the presence of hydrophobic interactions in TFE solution. Dielectric measurements showed for exon 6/water a decrease of relaxations times of bulk solvent implying a faster dynamics with a slight increase of the activation entropy, suggesting that exon 6 probably creates disorder within the solvent. For TFE/water mixtures, an influence of exon 6 on its environment was seen with a relaxation associated with the exon 6/solvent interactions reinforced by storage of 72 h. Finally, exon 6/solvent interactions were clearly observed with additionof TFE. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 943–952, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com