Premium
Thermodynamically controlled supramolecular polymerization of cytochrome b 562
Author(s) -
Kitagishi Hiroaki,
Oohora Koji,
Hayashi Takashi
Publication year - 2009
Publication title -
biopolymers
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.556
H-Index - 125
eISSN - 1097-0282
pISSN - 0006-3525
DOI - 10.1002/bip.21114
Subject(s) - hemeprotein , chemistry , heme , moiety , supramolecular chemistry , circular dichroism , polymerization , aqueous solution , polymer , covalent bond , supramolecular assembly , porphyrin , polymer chemistry , crystallography , photochemistry , stereochemistry , organic chemistry , crystal structure , enzyme
A hemoprotein‐based supramolecular polymer that has a covalently linked heme moiety on the protein surface has been constructed based on interprotein heme–heme pocket interactions of the chemically modified apocytochrome b 562 ( 1 ‐H63C). The thermodynamic properties of the polymer have been investigated by means of size exclusion chromatography, UV–vis spectroscopy, and circular dichroism spectroscopy. The results indicate that, as with other synthetic systems reported so far, the 1 ‐H63C hemoprotein assembly is thermodynamically controlled in aqueous solution: the degree of polymerization is dependent on the 1 ‐H63C concentration and is modulated by the addition of the end‐capping units, native heme, and/or apocytochrome b 562 mutant (apoH63C). These properties suggest a potential use for the hemoprotein self‐assembly in preparation of stimuli‐responsive functional nanobiomaterials. © 2008 Wiley Periodicals, Inc. Biopolymers 91: 194–200, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com