Premium
Specific heat studies of various wool–water systems
Author(s) -
Haly A. R.,
Snaith J. W.
Publication year - 1968
Publication title -
biopolymers
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.556
H-Index - 125
eISSN - 1097-0282
pISSN - 0006-3525
DOI - 10.1002/bip.1968.360060910
Subject(s) - chemistry , wool , enthalpy , absorption of water , atmospheric temperature range , thermodynamics , properties of water , absorption (acoustics) , organic chemistry , composite material , materials science , physics
Measurements of specific heat of wool‐water systems were made at approximately 5°C intervals over the temperature range −70 to 100°C. Ten different, samples were used, each with a different amount of absorbed water in the range from dry ness to saturation at 0°C. The graph of specific heat against temperature for dry wool is precisely linear over the complete temperature range, suggesting that thermal motion is entirely vibrational. When absorbed water is present the data can be conveniently discussed in terms of behavior below and above an amount of absorbed water of 22.7 g in 100 g of wool (22.7% of absorbed water). Below 22.7% there is only one temperature range in which the results indicate an appreciable transition in heat absorbing properties. The temperature of transition depends on water content but is higher than 0°C. Above 22.7% a second transition appears in the range −30 to 0°C and grows rapidly larger with increase of water content. The first transition is tentatively ascribed to a slightly cooperative breakdown of polar bonds in wool, and the second to a process analogous to melting in the absorbed water. The results are discussed in these terms as well as with reference to specific heat theories, the heat absorption of the wool component and the water component, and enthalpy differences between the various samples.