z-logo
Premium
Next‐Generation Industrial Biotechnology‐Transforming the Current Industrial Biotechnology into Competitive Processes
Author(s) -
Yu LinPing,
Wu FuQing,
Chen GuoQiang
Publication year - 2019
Publication title -
biotechnology journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.144
H-Index - 84
eISSN - 1860-7314
pISSN - 1860-6768
DOI - 10.1002/biot.201800437
Subject(s) - synthetic biology , microbiology and biotechnology , biochemical engineering , industrial biotechnology , metabolic engineering , industrial microbiology , chassis , biofuel , industrial production , business , biology , engineering , food science , computational biology , fermentation , biochemistry , structural engineering , keynesian economics , economics , enzyme
The chemical industry has made a contribution to modern society by providing cost‐competitive products for our daily use. However, it now faces a serious challenge regarding environmental pollutions and greenhouse gas emission. With the rapid development of molecular biology, biochemistry, and synthetic biology, industrial biotechnology has evolved to become more efficient for production of chemicals and materials. However, in contrast to chemical industries, current industrial biotechnology (CIB) is still not competitive for production of chemicals, materials, and biofuels due to their low efficiency and complicated sterilization processes as well as high‐energy consumption. It must be further developed into “next‐generation industrial biotechnology” (NGIB), which is low‐cost mixed substrates based on less freshwater consumption, energy‐saving, and long‐lasting open continuous intelligent processing, overcoming the shortcomings of CIB and transforming the CIB into competitive processes. Contamination‐resistant microorganism as chassis is the key to a successful NGIB, which requires resistance to microbial or phage contaminations, and available tools and methods for metabolic or synthetic biology engineering. This review proposes a list of contamination‐resistant bacteria and takes Halomonas spp. as an example for the production of a variety of products, including polyhydroxyalkanoates under open‐ and continuous‐processing conditions proposed for NGIB.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here