Premium
Formation of Alkanethiol Supported Hybrid Membranes Revisited
Author(s) -
Zhi Zelun,
Hasan Imad Y.,
Mechler Adam
Publication year - 2018
Publication title -
biotechnology journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.144
H-Index - 84
eISSN - 1860-7314
pISSN - 1860-6768
DOI - 10.1002/biot.201800101
Subject(s) - membrane , monolayer , bilayer , liposome , lipid bilayer , chemistry , quartz crystal microbalance , phospholipid , chemical engineering , vesicle , aqueous solution , biological membrane , biophysics , organic chemistry , adsorption , biochemistry , engineering , biology
A phospholipid monolayer supported on an alkanethiol self‐assembled monolayer (SAM) constitutes a supported hybrid membrane, a model of biological membranes optimized for electronic access through the underlying metal support surface. It is believed that phospholipids, when deposited from aqueous liposome suspension, spontaneously cover the alkanethiol‐modified surface, owing to the reduction of surface free energy of the hydrophobic alkane surface exposed to the solution. However, the formation of the hybrid layer has to overcome significant energy barriers in rupturing the vesicle and “unzipping” the membrane leaflets; hence drivers of the spontaneous hybrid membrane formation are unclear. In this work, the authors studied the efficiency of the liposome deposition method to form hybrid membranes on octanethiol and hexadecanethiol SAMs in aqueous environment. Using quartz crystal microbalance to monitor the deposition process it was found that the hybrid membrane did not form spontaneously; the deposit was dominated by hemi‐fused liposomes that can only be removed by applying osmotic stress. However, osmotic stress yielded a reproducible layer characterized by ≈−5Hz frequency change that is also confirmed by fluorescence microscopy imaging, irrespective of lipid concentration and the chain length of the SAMs. The frequency change is ≈20% of the frequency change expected for a tightly bound bilayer membrane, or 40% of a single leaflet, suggesting that the lipid layer is in a different conformation compared to a bilayer membrane: the acyl chains are most likely parallel to the SAM surface, likely due to strong hydrophobic interaction. Comparing these results to the literature it appears that the initial formation of hybrid membranes is inhibited by the ionic environment, while osmotic stress leads to the observed unique layer conformation.