Premium
Dual lifetime referencing enables pH‐control for oxidoreductions in hydrogel‐stabilized biphasic reaction systems
Author(s) -
Begemann Jens,
Spiess Antje C.
Publication year - 2015
Publication title -
biotechnology journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.144
H-Index - 84
eISSN - 1860-7314
pISSN - 1860-6768
DOI - 10.1002/biot.201500198
Subject(s) - chemistry , formate , ph indicator , aqueous solution , formic acid , formate dehydrogenase , combinatorial chemistry , fluorescence , cofactor , inorganic chemistry , catalysis , chromatography , organic chemistry , enzyme , quantum mechanics , physics
pH‐shifts are a serious challenge in cofactor dependent biocatalytic oxidoreductions. Therefore, a pH control strategy was developed for reaction systems, where the pH value is not directly measurable. Such a reaction system is the biphasic aqueous‐organic reaction system, where the oxidoreduction of hydrophobic substrates in organic solvents is catalysed by hydrogel‐immobilized enzymes, and enzyme‐coupled cofactor regeneration is accomplished via formate dehydrogenase, leading to a pH‐shift. Dual lifetime referencing (DLR), a fluorescence spectroscopic method, was applied for online‐monitoring of the pH‐value within the immobilizates during the reaction, allowing for a controlled dosage of formic acid. It could be shown that by applying trisodium 8‐hydroxypyrene‐1, 3, 6‐trisulfonate as pH indicator and Ru(II) tris(4, 7‐diphenyl‐1, 10‐phenantroline) (Ru[dpp]) as a reference luminophore the control of the pH‐value in a macroscopic gel‐bead‐stabilized aqueous/organic two phase system in a range of pH 6.5 to 8.0 is possible. An experimental proof of concept could maintain a stable pH of 7.5 ± 0.15 during the reaction for at least 105 h. With these results, it could be shown that DLR is a powerful tool for pH‐control within reaction systems with no direct access for conventional pH‐measurement.