Premium
Enhanced extraction of proteins using cholinium‐based ionic liquids as phase‐forming components of aqueous biphasic systems
Author(s) -
Quental Maria V.,
Caban Magda,
Pereira Matheus M.,
Stepnowski Piotr,
Coutinho João A. P.,
Freire Mara G.
Publication year - 2015
Publication title -
biotechnology journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.144
H-Index - 84
eISSN - 1860-7314
pISSN - 1860-6768
DOI - 10.1002/biot.201500003
Subject(s) - bovine serum albumin , extraction (chemistry) , ionic liquid , aqueous solution , chromatography , polypropylene glycol , materials science , aqueous two phase system , chemistry , organic chemistry , polyethylene glycol , catalysis
Aqueous biphasic systems (ABS) composed of ionic liquids (ILs) are promising platforms for the extraction and purification of proteins. In this work, a series of alternative and biocompatible ABS composed of cholinium‐based ILs and polypropylene glycol were investigated. The respective ternary phase diagrams, tie‐lines, tie‐line lengths and critical points were determined at 25°C. The extraction performance of these systems for commercial bovine serum albumin (BSA) was then evaluated. The stability of BSA at the IL‐rich phase was ascertained by size exclusion high‐performance liquid chromatography and Fourier transform infrared spectroscopy. Appropriate ILs lead to the complete extraction of BSA for the IL‐rich phase, in a single step, while maintaining the protein's native conformation. Furthermore, to evaluate the performance of these systems when applied to real matrices, the extraction of BSA from bovine serum was additionally carried out, revealing that the complete extraction of BSA was maintained and achieved in a single step. The remarkable extraction efficiencies obtained are far superior to those observed with typical polymer‐based ABS. Therefore, the proposed ABS may be envisaged as a more effective and biocompatible approach for the separation and purification of other value‐added proteins.