Premium
Gene network analysis leads to functional validation of pathways linked to cancer cell growth and survival
Author(s) -
Berger Emmanuelle,
Vega Nathalie,
Vidal Hubert,
Geloën Alain
Publication year - 2012
Publication title -
biotechnology journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.144
H-Index - 84
eISSN - 1860-7314
pISSN - 1860-6768
DOI - 10.1002/biot.201200188
Subject(s) - biology , transcription factor , in silico , signal transduction , cancer research , cell growth , biological pathway , transcriptome , cell cycle , computational biology , microbiology and biotechnology , gene , bioinformatics , gene expression , genetics
Hepatocellular carcinoma (HCC) represents one of the most frequently diagnosed human cancers; however, there are currently few treatment alternatives to surgical resection. In this study we performed bioinformatic analysis of previously published transcriptomic data in order to characterize liver specific networks, including biological functions, signaling pathways and transcription factors, potentially dysregulated in HCC. By incorporating specific signaling inhibitors into real‐time proliferation assays using HepG2 cells, we then validated these in silico results. We found that G protein subunits Gi/G0, protein kinase C, Mek1/2, and Erk1/2 (P42/44), JAK1, PPARA and NFκB p65 subunit were the major signaling molecules required for survival and proliferation of human HCC cell lines. We also found that these pathways regulate the expression of key hepatic transcription factors involved in cell differentiation, such as CEBPA, EGR1, FOXM1 and PPARs. By combining bioinformatic and functional analyses, major signaling pathways related to tumorigenicity in HCC are revealed, thereby elucidating potential targets for drug therapies.