z-logo
Premium
Reversible acetylation of chromatin: Implication in regulation of gene expression, disease and therapeutics
Author(s) -
Selvi Ruthrotha B.,
Kundu Tapas K.
Publication year - 2009
Publication title -
biotechnology journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.144
H-Index - 84
eISSN - 1860-7314
pISSN - 1860-6768
DOI - 10.1002/biot.200900032
Subject(s) - chromatin , histone modifying enzymes , histone , acetylation , non histone protein , biology , chromatin remodeling , histone acetyltransferases , microbiology and biotechnology , epigenetics , context (archaeology) , dna , computational biology , gene , genetics , paleontology
The eukaryotic genome is a highly dynamic nucleoprotein complex that is comprised of DNA, histones, nonhistone proteins and RNA, and is termed as chromatin. The dynamicity of the chromatin is responsible for the regulation of all the DNA‐templated phenomena in the cell. Several factors, including the nonhistone chromatin components, ATP‐dependent remodeling factors and the chromatin‐modifying enzymes, mediate the combinatorial post‐translational modifications that control the chromatin fluidity and, thereby, the cellular functions. Among these modifications, reversible acetylation plays a central role in the highly orchestrated network. The enzymes responsible for the reversible acetylation, the histone acetyltransferases (HATs) and histone deacetylases (HDACs), not only act on histone substrates but also on nonhistone proteins. Dysfunction of the HATs/HDACs is associated with various diseases like cancer, diabetes, asthma, cardiac hypertrophy, retroviral pathogenesis and neurodegenerative disorders. Therefore, modulation of these enzymes is being considered as an important therapeutic strategy. Although substantial progress has been made in the area of HDAC inhibitors, we have focused this review on the HATs and their small‐molecule modulators in the context of disease and therapeutics. Recent discoveries from different groups have established the involvement of HAT function in various diseases. Furthermore, several new classes of HAT modulators have been identified and their biological activities have also been reported. The scaffold of these small molecules can be used for the design and synthesis of better and efficient modulators with superior therapeutic efficacy.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here