z-logo
Premium
Dynamical analysis of the calcium signaling pathway in cardiac myocytes based on logarithmic sensitivity analysis
Author(s) -
Kim TaeHwan,
Shin SungYoung,
Choo SangMok,
Cho KwangHyun
Publication year - 2008
Publication title -
biotechnology journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.144
H-Index - 84
eISSN - 1860-7314
pISSN - 1860-6768
DOI - 10.1002/biot.200700247
Subject(s) - myocyte , calcium signaling , in silico , calcium , cytosol , intracellular , biophysics , signal transduction , calcium in biology , cardiac myocyte , sensitivity (control systems) , chemistry , microbiology and biotechnology , biology , medicine , biochemistry , enzyme , electronic engineering , engineering , gene
Abstract Many cellular functions are regulated by the Ca 2+ signal which contains specific information in the form of frequency, amplitude, and duration of the oscillatory dynamics. Any alterations or dysfunctions of components in the calcium signaling pathway of cardiac myocytes may lead to a diverse range of cardiac diseases including hypertrophy and heart failure. In this study, we have investigated the hidden dynamics of the intracellular Ca 2+ signaling and the functional roles of its regulatory mechanism through in silico simulations and parameter sensitivity analysis based on an experimentally verified mathematical model. It was revealed that the Ca 2+ dynamics of cardiac myocytes are determined by the balance among various system parameters. Moreover, it was found through the parameter sensitivity analysis that the self‐oscillatory Ca 2+ dynamics are most sensitive to the Ca 2+ leakage rate of the sarcolemmal membrane and the maximum rate of NCX, suggesting that these two components have dominant effects on circulating the cytosolic Ca 2+ .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here