z-logo
Premium
Oligodendrogenesis: The role of iron
Author(s) -
Badaracco Maria Elvira,
Siri Maria Victoria Rosato,
Pasquini Juana Maria
Publication year - 2010
Publication title -
biofactors
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.204
H-Index - 94
eISSN - 1872-8081
pISSN - 0951-6433
DOI - 10.1002/biof.90
Subject(s) - myelin , oligodendrocyte , proteolipid protein 1 , corpus callosum , microbiology and biotechnology , myelin basic protein , biology , neuroscience , chemistry , central nervous system
Iron seems to be an essential factor in myelination and oligodendrocyte (OLGc) biology. However, the specific role of iron in these processes remains to be elucidated. Iron deficiency (ID) imposed to developing rats has been a relevant model to understand the role of iron in oligodendrogenesis and myelination. During early development ID causes specific changes in myelin composition, including a lower relative content of cholesterol, proteolipid protein (PLP), and myelin basic protein 21 (MBP21). These changes could be a consequence of the adverse effects of ID on OLGc development and function. We subsenquently studied the possible corrective effect of a single intracranial injection (ICI) of apotransferrin (aTf) on myelin formation in ID rats OLGc migration and differentiation after an ICI of aTf was evaluated at 3 days of age. ID increased the number of proliferating and undifferentiated cells in the corpus callosum (CC), while a single aTf injection reverts these effects, increasing the number of mature cells and myelin formation. Overall, results of a series of studies supports the concept that iron may affect OLGc development at early stages of embryogenesis rather than during late development. Myelin composition is altered by a limited iron supply, changes that can be reverted by a single injection of aTf.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here