Premium
Flow cytometric analysis of fine particles in a eutrophic lake
Author(s) -
Guo Peiyong,
Zhu Yinmei,
Zhang Zhijian
Publication year - 2005
Publication title -
luminescence
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.428
H-Index - 45
eISSN - 1522-7243
pISSN - 1522-7235
DOI - 10.1002/bio.830
Subject(s) - autotroph , eutrophication , phycoerythrin , environmental chemistry , chlorophyll a , pigment , environmental science , chemistry , flow cytometry , ecology , botany , biology , nutrient , genetics , organic chemistry , bacteria
Fine particles play an important role, not only in aquatic biogeochemical processing but also in the distribution, transfer and transformation of pollutants in the aquatic environment. Flow cytometry, widely used in biomedical research, allows fast counting and optical analysis of individual particles. Organic autotrophic particles contain naturally fluorescing pigments, such as chlorophyll and phycoerythrin. Different populations have different sizes and pigments. They also have different ratios of pigments. In general, side angle scatter (SSC) is related to the size, shape and refractive index of particles. When a 488 nm wavelength was used to excite chlorophyll and phycoerythrin fluorescence, the pigments of organic autotrophic particles emitted red and orange light. Fine particles were detected by flow cytometry (FCM) in the southern part of a eutrophic lake in winter. We found that organic autotrophic particles belonged to three populations, which represented only 15.89% of total fine particles. Organic non‐living particles and inorganic particles represented the greater part (84.11%) of total fine particles. This study also demonstrated that flow cytometry is well suited to the dynamic monitoring and analysis of natural water aquatic particles that were difficult to study with traditional methods. Copyright © 2005 John Wiley & Sons, Ltd.