z-logo
Premium
Photostability of quantum dot micelles under ultraviolet irradiation
Author(s) -
Chinnathambi Shanmugavel,
Hanagata Nobutaka
Publication year - 2019
Publication title -
luminescence
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.428
H-Index - 45
eISSN - 1522-7243
pISSN - 1522-7235
DOI - 10.1002/bio.3618
Subject(s) - micelle , photoluminescence , quantum dot , photochemistry , phospholipid , polyethylene glycol , materials science , chemistry , ultraviolet , peg ratio , fluorescence , nanotechnology , optoelectronics , organic chemistry , aqueous solution , membrane , physics , optics , biochemistry , finance , economics
Phospholipid quantum dot micelles are useful for bio‐applications because of their amphiphilicity and exceptional biocompatibilities. We investigated the uptake of phospholipid [polyethylene glycol (PEG), biotin, and folic acid terminated] modified CdSe/ZnS quantum dot micelles by cancer cells and its photostability under ultrviolet light in the C spectrum (UV‐C) (254 nm) or UV‐A (365 nm) light irradiation. The stability of micelles to the exposure of UV‐C and UV‐A light was assessed. Biotin‐modified quantum dot micelles give photoluminescence enhancement under UV‐C light irradiation. Folate modified micelle under UV‐C and UV‐A results show considerable photoluminescence enhancement. Photoluminescence lifetime measurements showed 7.04, 8.11 and 11.42 ns for PEG, folate, and biotin terminated phospholipid micelles, respectively. Folate and biotin‐modified quantum dot micelles showed excellent uptake by HeLa cells under fluorescence confocal microscopy. Phospholipid CdSe/ZnS quantum dot micelles can be potentially used for diagnosis and treatment of cancer in the future.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here