Premium
Preparation of balanced trichromatic white phosphors for solid‐state white lighting
Author(s) -
AlWaisawy Sara,
George Anthony F.,
Jadwisienczak Wojciech M.,
Rahman Faiz
Publication year - 2017
Publication title -
luminescence
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.428
H-Index - 45
eISSN - 1522-7243
pISSN - 1522-7235
DOI - 10.1002/bio.3253
Subject(s) - phosphor , chromaticity , color rendering index , light emitting diode , optics , optoelectronics , solid state lighting , materials science , color temperature , diode , luminescence , physics
High quality white light‐emitting diodes (LEDs) employ multi‐component phosphor mixtures to generate light of a high color rendering index (CRI). The number of distinct components in a typical phosphor mix usually ranges from two to four. Here we describe a systematic experimental technique for starting with phosphors of known chromatic properties and arriving at their respective proportions for creating a blended phosphor to produce light of the desired chromaticity. This method is applicable to both LED pumped and laser diode (LD) pumped white light sources. In this approach, the radiometric power in the down‐converted luminescence of each phosphor is determined and that information is used to estimate the CIE chromaticity coordinate of light generated from the mixed phosphor. A suitable method for mixing multi‐component phosphors is also described. This paper also examines the effect of light scattering particles in phosphors and their use for altering the spectral characteristics of LD‐ and LED‐generated light. This is the only approach available for making high efficiency phosphor‐converted single‐color LEDs that emit light of wide spectral width.