z-logo
Premium
Chemiluminescence accompanied by the reaction of acridinium ester and manganese (II)
Author(s) -
Ren Lingling,
Cui Hua
Publication year - 2014
Publication title -
luminescence
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.428
H-Index - 45
eISSN - 1522-7243
pISSN - 1522-7235
DOI - 10.1002/bio.2643
Subject(s) - chemistry , chemiluminescence , manganese , oxygen , radical , excited state , photochemistry , reaction mechanism , inorganic chemistry , reactive oxygen species , catalysis , organic chemistry , nuclear physics , biochemistry , physics
An acridinium ester (AE) alkaline solution can react with Mn(II) to generate a strong chemiluminescence (CL) centered at 435 nm. The effects of reaction conditions such as pH and Mn(II) concentration on CL intensity were examined. In order to explore the CL mechanism, the effect of oxygen on the CL reaction was examined and an X‐ray photoelectron spectroscopy study of the reaction precipitate was carried out. The results indicated that oxygen participated in the CL reaction and Mn(IV) was the primary product in the system. A possible mechanism was proposed that involved two pathways: (1) dissolved oxygen was reduced to reactive oxygen radicals by Mn(II), these reactive intermediates then reacted with AE to produce excited state acridone; (2) Mn(II) could reduce AE to partly reduced AE, which then reacted with oxygen to form excited state acridone. The reactions of other metal ions with AE were also tested, and only Mn(II) was shown to trigger strong CL emission of AE, which indicated that the system had good selectivity for Mn(II). Copyright © 2014 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here