z-logo
Premium
The photodynamic effect: the comparison of chemiexcitation by luminol and phthalhydrazide
Author(s) -
Bancirova Martina,
Lasovský Jan
Publication year - 2010
Publication title -
luminescence
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.428
H-Index - 45
eISSN - 1522-7243
pISSN - 1522-7235
DOI - 10.1002/bio.1245
Subject(s) - photosensitizer , chemiluminescence , photochemistry , chemistry , photodynamic therapy , luminol , quantum yield , singlet oxygen , methylene blue , fluorescence , oxygen , photocatalysis , biochemistry , organic chemistry , optics , catalysis , physics
The presence of light, oxygen and photosensitizer (organic dye) is required for the photodynamic effect. Light and photosensitizer are harmless by themselves, but when combined with oxygen, reactive oxygen species (ROS) can be produced. This photodynamic effect is used in photodynamic therapy (PDT); the production of ROS as lethal cytotoxic agents can inactivate tumor cells. However, during PDT, there are many difficulties, so it is not possible to excite the photosensitizer using a laser, a source of light at the wavelengths specific to the photosensitizer (in visible region of the spectrum). Chemiluminescence is the light emission as a result of a chemical reaction. It is possible to use a chemiluminescent mixture to excite the photosensitizer even if the light emission does not conform to the absorption maximum of the photosensitizer. Luciferin and luminol have been used as chemiluminescent compounds (energizers) for the excitation of the photosensitizers. The aim of this work was to compare the chemiexcitation of some selected photosensitizers (e.g. fluorescein, eosin, methylene blue, hypericin and phthalocyanines) by chemiluminescent mixtures containing luminol (high chemiluminescent quantum yield) or phthalhydrazide (low chemiluminescent quantum yield) on some Gram‐positive ( Enterococcus faecalis , Staphylococcus aureus ) and Gram‐negative ( Pseudomonas aeruginosa , E . coli ) bacteria and some cell lines (NIH3T3 and MCF7). The efficiency of the chemiexcitation was dependent on the kind of the photosensitizer and on the type of the bacterial strain or cell line and was independent of the energizers. Copyright © 2010 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here