Premium
Construction of Prediction Intervals in Location‐Scale Families
Author(s) -
Kushary Debashis
Publication year - 1996
Publication title -
biometrical journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.108
H-Index - 63
eISSN - 1521-4036
pISSN - 0323-3847
DOI - 10.1002/bimj.4710380712
Subject(s) - sigma , physics , estimator , combinatorics , mathematics , statistics , quantum mechanics
Let x 1 ≤ x 2 ≤ x 3 … ≤ x r be the r smallest observations out of n observations from a location‐scale family with density \documentclass{article}\pagestyle{empty}\begin{document}$ \frac{1}{\sigma}f\left({\frac{{x - \mu}}{\sigma}} \right) $\end{document} where μ and σ are the location and the scale parameters respectively. The goal is to construct a prediction interval of the form \documentclass{article}\pagestyle{empty}\begin{document}$ \left({\hat \mu + k_1 \hat \sigma,\,\hat \mu + k_2 \hat \sigma} \right) $\end{document} for a location‐scale invariant function, T(Y) = T(Y 1 , …, Y m ), of m future observations from the same distribution. Given any invariant estimators \documentclass{article}\pagestyle{empty}\begin{document}$ \hat \mu $\end{document} and \documentclass{article}\pagestyle{empty}\begin{document}$ \hat \sigma $\end{document} , we have developed a general procedure for how to compute the values of k 1 and k 2 . The two attractive features of the procedure are that it does not require any distributional knowledge of the joint distribution of the estimators beyond their first two raw moments and \documentclass{article}\pagestyle{empty}\begin{document}$ \hat \mu $\end{document} and \documentclass{article}\pagestyle{empty}\begin{document}$ \hat \sigma $\end{document} can be any invariant estimators of μ and σ. Examples with real data have been given and extensive simulation study showing the performance of the procedure is also offered.