z-logo
Premium
Optimal Experimental Design and Accuracy of Parameter Estimation for Nonlinear Regression Models Used in Long‐term Selection
Author(s) -
Rudolph P. E.,
Herrendörfer G.
Publication year - 1995
Publication title -
biometrical journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.108
H-Index - 63
eISSN - 1521-4036
pISSN - 0323-3847
DOI - 10.1002/bimj.4710370209
Subject(s) - nonlinear regression , term (time) , parametric statistics , mathematics , selection (genetic algorithm) , estimator , nonlinear system , regression analysis , statistics , interval (graph theory) , model selection , estimation theory , regression , exponential function , parametric model , computer science , machine learning , mathematical analysis , physics , quantum mechanics , combinatorics
An experimental design problem is considered for the analysis of long‐term selection experiments with nonlinear regression models. For a 3‐parametric exponential regression function whose parameters have also a reasonable biological interpretation approximate formulas for the determination of the necessary number of observations at each generation are constructed in such a way that the half expected length of an (1 — α)‐confidence interval for a chosen parameter is not greater than a given value. In this sense the accuracy of the parameter estimators can be described.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here