Premium
Correcting the bias of the net benefit estimator due to right‐censored observations
Author(s) -
Péron Julien,
Idlhaj Maryam,
MaucortBoulch Delphine,
Giai Joris,
Roy Pascal,
Collette Laurence,
Buyse Marc,
Ozenne Brice
Publication year - 2021
Publication title -
biometrical journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.108
H-Index - 63
eISSN - 1521-4036
pISSN - 0323-3847
DOI - 10.1002/bimj.202000001
Subject(s) - censoring (clinical trials) , estimator , pairwise comparison , statistics , mathematics , type i and type ii errors , randomized experiment , econometrics
Generalized pairwise comparisons (GPCs) are a statistical method used in randomized clinical trials to simultaneously analyze several prioritized outcomes. This procedure estimates the net benefit (Δ). Δ may be interpreted as the probability for a random patient in the treatment group to have a better overall outcome than a random patient in the control group, minus the probability of the opposite situation. However, the presence of right censoring introduces uninformative pairs that will typically bias the estimate of Δ toward 0. We propose a correction to GPCs that estimates the contribution of each uninformative pair based on the average contribution of the informative pairs. The correction can be applied to the analysis of several prioritized outcomes. We perform a simulation study to evaluate the bias associated with this correction. When only one time‐to‐event outcome was generated, the corrected estimates were unbiased except in the presence of very heavy censoring. The correction had no effect on the power or type‐1 error of the tests based on the Δ. Finally, we illustrate the impact of the correction using data from two randomized trials. The illustrative datasets showed that the correction had limited impact when the proportion of censored observations was around 20% and was most useful when this proportion was close to 70%. Overall, we propose an estimator for the net benefit that is minimally affected by censoring under the assumption that uninformative pairs are exchangeable with informative pairs.