Premium
Adjusting for selection bias in assessing treatment effect estimates from multiple subgroups
Author(s) -
Glimm Ekkehard
Publication year - 2019
Publication title -
biometrical journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.108
H-Index - 63
eISSN - 1521-4036
pISSN - 0323-3847
DOI - 10.1002/bimj.201800097
Subject(s) - selection bias , statistics , selection (genetic algorithm) , treatment effect , econometrics , mathematics , multiple comparisons problem , medicine , demography , computer science , artificial intelligence , traditional medicine , sociology
This paper discusses a number of methods for adjusting treatment effect estimates in clinical trials where differential effects in several subpopulations are suspected. In such situations, the estimates from the most extreme subpopulation are often overinterpreted. The paper focusses on the construction of simultaneous confidence intervals intended to provide a more realistic assessment regarding the uncertainty around these extreme results. The methods from simultaneous inference are compared with shrinkage estimates arising from Bayesian hierarchical models by discussing salient features of both approaches in a typical application.