z-logo
Premium
Hierarchical multivariate mixture generalized linear models for the analysis of spatial data: An application to disease mapping
Author(s) -
Torabi Mahmoud
Publication year - 2016
Publication title -
biometrical journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.108
H-Index - 63
eISSN - 1521-4036
pISSN - 0323-3847
DOI - 10.1002/bimj.201500248
Subject(s) - multivariate statistics , multivariate normal distribution , multivariate analysis , generalized linear model , statistics , population , mathematics , generalized linear mixed model , computer science , econometrics , medicine , environmental health
Disease mapping of a single disease has been widely studied in the public health setup. Simultaneous modeling of related diseases can also be a valuable tool both from the epidemiological and from the statistical point of view. In particular, when we have several measurements recorded at each spatial location, we need to consider multivariate models in order to handle the dependence among the multivariate components as well as the spatial dependence between locations. It is then customary to use multivariate spatial models assuming the same distribution through the entire population density. However, in many circumstances, it is a very strong assumption to have the same distribution for all the areas of population density. To overcome this issue, we propose a hierarchical multivariate mixture generalized linear model to simultaneously analyze spatial Normal and non‐Normal outcomes. As an application of our proposed approach, esophageal and lung cancer deaths in Minnesota are used to show the outperformance of assuming different distributions for different counties of Minnesota rather than assuming a single distribution for the population density. Performance of the proposed approach is also evaluated through a simulation study.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here