z-logo
Premium
Least squares regression methods for clustered ROC data with discrete covariates
Author(s) -
Tang Liansheng Larry,
Zhang Wei,
Li Qizhai,
Ye Xuan,
Chan Leighton
Publication year - 2016
Publication title -
biometrical journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.108
H-Index - 63
eISSN - 1521-4036
pISSN - 0323-3847
DOI - 10.1002/bimj.201500099
Subject(s) - receiver operating characteristic , covariate , mathematics , nonparametric statistics , statistics , cluster analysis , generalized least squares , least squares function approximation , ordinary least squares , regression , explained sum of squares , pattern recognition (psychology) , computer science , artificial intelligence , estimator
The receiver operating characteristic (ROC) curve is a popular tool to evaluate and compare the accuracy of diagnostic tests to distinguish the diseased group from the nondiseased group when test results from tests are continuous or ordinal. A complicated data setting occurs when multiple tests are measured on abnormal and normal locations from the same subject and the measurements are clustered within the subject. Although least squares regression methods can be used for the estimation of ROC curve from correlated data, how to develop the least squares methods to estimate the ROC curve from the clustered data has not been studied. Also, the statistical properties of the least squares methods under the clustering setting are unknown. In this article, we develop the least squares ROC methods to allow the baseline and link functions to differ, and more importantly, to accommodate clustered data with discrete covariates. The methods can generate smooth ROC curves that satisfy the inherent continuous property of the true underlying curve. The least squares methods are shown to be more efficient than the existing nonparametric ROC methods under appropriate model assumptions in simulation studies. We apply the methods to a real example in the detection of glaucomatous deterioration. We also derive the asymptotic properties of the proposed methods.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here