z-logo
Premium
Bayesian variable selection and estimation in semiparametric joint models of multivariate longitudinal and survival data
Author(s) -
Tang AnMin,
Zhao Xingqiu,
Tang NianSheng
Publication year - 2017
Publication title -
biometrical journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.108
H-Index - 63
eISSN - 1521-4036
pISSN - 0323-3847
DOI - 10.1002/bimj.201500070
Subject(s) - covariate , multivariate statistics , gibbs sampling , bayesian probability , mathematics , statistics , semiparametric model , semiparametric regression , feature selection , lasso (programming language) , estimator , econometrics , computer science , artificial intelligence , world wide web
This paper presents a novel semiparametric joint model for multivariate longitudinal and survival data (SJMLS) by relaxing the normality assumption of the longitudinal outcomes, leaving the baseline hazard functions unspecified and allowing the history of the longitudinal response having an effect on the risk of dropout. Using Bayesian penalized splines to approximate the unspecified baseline hazard function and combining the Gibbs sampler and the Metropolis–Hastings algorithm, we propose a Bayesian Lasso (BLasso) method to simultaneously estimate unknown parameters and select important covariates in SJMLS. Simulation studies are conducted to investigate the finite sample performance of the proposed techniques. An example from the International Breast Cancer Study Group (IBCSG) is used to illustrate the proposed methodologies.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom