Premium
A flexible cure rate model for spatially correlated survival data based on generalized extreme value distribution and Gaussian process priors
Author(s) -
Li Dan,
Wang Xia,
Dey Dipak K.
Publication year - 2016
Publication title -
biometrical journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.108
H-Index - 63
eISSN - 1521-4036
pISSN - 0323-3847
DOI - 10.1002/bimj.201500040
Subject(s) - covariate , autoregressive model , prior probability , econometrics , mathematics , bayesian probability , context (archaeology) , statistics , gaussian process , random effects model , computer science , gaussian , medicine , paleontology , physics , meta analysis , quantum mechanics , biology
Our present work proposes a new survival model in a Bayesian context to analyze right‐censored survival data for populations with a surviving fraction, assuming that the log failure time follows a generalized extreme value distribution. Many applications require a more flexible modeling of covariate information than a simple linear or parametric form for all covariate effects. It is also necessary to include the spatial variation in the model, since it is sometimes unexplained by the covariates considered in the analysis. Therefore, the nonlinear covariate effects and the spatial effects are incorporated into the systematic component of our model. Gaussian processes (GPs) provide a natural framework for modeling potentially nonlinear relationship and have recently become extremely powerful in nonlinear regression. Our proposed model adopts a semiparametric Bayesian approach by imposing a GP prior on the nonlinear structure of continuous covariate. With the consideration of data availability and computational complexity, the conditionally autoregressive distribution is placed on the region‐specific frailties to handle spatial correlation. The flexibility and gains of our proposed model are illustrated through analyses of simulated data examples as well as a dataset involving a colon cancer clinical trial from the state of Iowa.