z-logo
Premium
Functional exploratory data analysis for high‐resolution measurements of urban particulate matter
Author(s) -
Ranalli M. Giovanna,
Rocco Giorgia,
Jona Lasinio Giovanna,
Moroni Beatrice,
Castellini Silvia,
Crocchianti Stefano,
Cappelletti David
Publication year - 2016
Publication title -
biometrical journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.108
H-Index - 63
eISSN - 1521-4036
pISSN - 0323-3847
DOI - 10.1002/bimj.201400251
Subject(s) - environmental science , cluster (spacecraft) , dimension (graph theory) , curse of dimensionality , sample size determination , aerosol , computer science , representation (politics) , statistics , remote sensing , meteorology , mathematics , geography , politics , political science , pure mathematics , law , programming language
In this work we propose the use of functional data analysis (FDA) to deal with a very large dataset of atmospheric aerosol size distribution resolved in both space and time. Data come from a mobile measurement platform in the town of Perugia (Central Italy). An OPC (Optical Particle Counter) is integrated on a cabin of the Minimetrò, an urban transportation system, that moves along a monorail on a line transect of the town. The OPC takes a sample of air every six seconds and counts the number of particles of urban aerosols with a diameter between 0.28 μ m and 10 μ m and classifies such particles into 21 size bins according to their diameter. Here, we adopt a 2D functional data representation for each of the 21 spatiotemporal series. In fact, space is unidimensional since it is measured as the distance on the monorail from the base station of the Minimetrò. FDA allows for a reduction of the dimensionality of each dataset and accounts for the high space‐time resolution of the data. Functional cluster analysis is then performed to search for similarities among the 21 size channels in terms of their spatiotemporal pattern. Results provide a good classification of the 21 size bins into a relatively small number of groups (between three and four) according to the season of the year. Groups including coarser particles have more similar patterns, while those including finer particles show a more different behavior according to the period of the year. Such features are consistent with the physics of atmospheric aerosol and the highlighted patterns provide a very useful ground for prospective model‐based studies.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here