z-logo
Premium
Sparse canonical correlation analysis from a predictive point of view
Author(s) -
Wilms Ines,
Croux Christophe
Publication year - 2015
Publication title -
biometrical journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.108
H-Index - 63
eISSN - 1521-4036
pISSN - 0323-3847
DOI - 10.1002/bimj.201400226
Subject(s) - canonical correlation , mathematics , correlation , canonical analysis , statistics , point (geometry) , statistical physics , physics , geometry
Canonical correlation analysis (CCA) describes the associations between two sets of variables by maximizing the correlation between linear combinations of the variables in each dataset. However, in high‐dimensional settings where the number of variables exceeds the sample size or when the variables are highly correlated, traditional CCA is no longer appropriate. This paper proposes a method for sparse CCA. Sparse estimation produces linear combinations of only a subset of variables from each dataset, thereby increasing the interpretability of the canonical variates. We consider the CCA problem from a predictive point of view and recast it into a regression framework. By combining an alternating regression approach together with a lasso penalty, we induce sparsity in the canonical vectors. We compare the performance with other sparse CCA techniques in different simulation settings and illustrate its usefulness on a genomic dataset.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here