z-logo
Premium
Two‐stage estimation for multivariate recurrent event data with a dependent terminal event
Author(s) -
Chen ChyongMei,
Chuang YaWen,
Shen PaoSheng
Publication year - 2015
Publication title -
biometrical journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.108
H-Index - 63
eISSN - 1521-4036
pISSN - 0323-3847
DOI - 10.1002/bimj.201400001
Subject(s) - event (particle physics) , multivariate statistics , statistics , marginal model , proportional hazards model , estimator , mathematics , econometrics , regression analysis , physics , quantum mechanics
Recurrent event data arise in longitudinal follow‐up studies, where each subject may experience the same type of events repeatedly. The work in this article is motivated by the data from a study of repeated peritonitis for patients on peritoneal dialysis. Due to the aspects of medicine and cost, the peritonitis cases were classified into two types: Gram‐positive and non‐Gram‐positive peritonitis. Further, since the death and hemodialysis therapy preclude the occurrence of recurrent events, we face multivariate recurrent event data with a dependent terminal event. We propose a flexible marginal model, which has three characteristics: first, we assume marginal proportional hazard and proportional rates models for terminal event time and recurrent event processes, respectively; second, the inter‐recurrences dependence and the correlation between the multivariate recurrent event processes and terminal event time are modeled through three multiplicative frailties corresponding to the specified marginal models; third, the rate model with frailties for recurrent events is specified only on the time before the terminal event. We propose a two‐stage estimation procedure for estimating unknown parameters. We also establish the consistency of the two‐stage estimator. Simulation studies show that the proposed approach is appropriate for practical use. The methodology is applied to the peritonitis cohort data that motivated this study.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here