Premium
Small area estimation for semicontinuous skewed spatial data: An application to the grape wine production in Tuscany
Author(s) -
Dreassi Emanuela,
Petrucci Alessandra,
Rocco Emilia
Publication year - 2014
Publication title -
biometrical journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.108
H-Index - 63
eISSN - 1521-4036
pISSN - 0323-3847
DOI - 10.1002/bimj.201200271
Subject(s) - small area estimation , estimator , mathematics , skewness , statistics , bivariate analysis , random effects model , variable (mathematics) , hierarchical database model , bayesian probability , mixed model , econometrics , computer science , data mining , medicine , mathematical analysis , meta analysis
Linear‐mixed models are frequently used to obtain model‐based estimators in small area estimation (SAE) problems. Such models, however, are not suitable when the target variable exhibits a point mass at zero, a highly skewed distribution of the nonzero values and a strong spatial structure. In this paper, a SAE approach for dealing with such variables is suggested. We propose a two‐part random effects SAE model that includes a correlation structure on the area random effects that appears in the two parts and incorporates a bivariate smooth function of the geographical coordinates of units. To account for the skewness of the distribution of the positive values of the response variable, a Gamma model is adopted. To fit the model, to get small area estimates and to evaluate their precision, a hierarchical Bayesian approach is used. The study is motivated by a real SAE problem. We focus on estimation of the per‐farm average grape wine production in Tuscany, at subregional level, using the Farm Structure Survey data. Results from this real data application and those obtained by a model‐based simulation experiment show a satisfactory performance of the suggested SAE approach.