z-logo
Premium
Interval estimation of the mean difference in the analysis of over‐dispersed count data
Author(s) -
Saha Krishna K.
Publication year - 2013
Publication title -
biometrical journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.108
H-Index - 63
eISSN - 1521-4036
pISSN - 0323-3847
DOI - 10.1002/bimj.201200032
Subject(s) - estimator , confidence interval , mathematics , statistics , interval estimation , interval (graph theory) , monte carlo method , coverage probability , variance (accounting) , ratio estimator , bias of an estimator , minimum variance unbiased estimator , accounting , combinatorics , business
This paper focuses on the development and study of the confidence interval procedures for mean difference between two treatments in the analysis of over‐dispersed count data in order to measure the efficacy of the experimental treatment over the standard treatment in clinical trials. In this study, two simple methods are proposed. One is based on a sandwich estimator of the variance of the regression estimator using the generalized estimating equations (GEEs) approach of Zeger and Liang (1986) and the other is based on an estimator of the variance of a ratio estimator (1977). We also develop three other procedures following the procedures studied by Newcombe (1998) and the procedure studied by Beal (1987). As assessed by Monte Carlo simulations, all the procedures have reasonably well coverage properties. Moreover, the interval procedure based on GEEs outperforms other interval procedures in the sense that it maintains the coverage very close to the nominal coverage level and that it has the shortest interval length, a satisfactory location property, and a very simple form, which can be easily implemented in the applied fields. Illustrative applications in the biological studies for these confidence interval procedures are also presented.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here