z-logo
Premium
Hierarchical Bayesian modeling of heterogeneous cluster‐ and subject‐level associations between continuous and binary outcomes in dairy production
Author(s) -
Bello Nora M.,
Steibel Juan P.,
Tempelman Robert J.
Publication year - 2012
Publication title -
biometrical journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.108
H-Index - 63
eISSN - 1521-4036
pISSN - 0323-3847
DOI - 10.1002/bimj.201100055
Subject(s) - random effects model , mathematics , generalized linear mixed model , statistics , categorical variable , bivariate analysis , multilevel model , mixed model , econometrics , medicine , meta analysis
The augmentation of categorical outcomes with underlying Gaussian variables in bivariate generalized mixed effects models has facilitated the joint modeling of continuous and binary response variables. These models typically assume that random effects and residual effects (co)variances are homogeneous across all clusters and subjects, respectively. Motivated by conflicting evidence about the association between performance outcomes in dairy production systems, we consider the situation where these (co)variance parameters may themselves be functions of systematic and/or random effects. We present a hierarchical Bayesian extension of bivariate generalized linear models whereby functions of the (co)variance matrices are specified as linear combinations of fixed and random effects following a square‐root‐free Cholesky reparameterization that ensures necessary positive semidefinite constraints. We test the proposed model by simulation and apply it to the analysis of a dairy cattle data set in which the random herd‐level and residual cow‐level effects (co)variances between a continuous production trait and binary reproduction trait are modeled as functions of fixed management effects and random cluster effects.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here