z-logo
Premium
Joint generalized models for multidimensional outcomes: A case study of neuroscience data from multimodalities
Author(s) -
Wang XiaoFeng
Publication year - 2012
Publication title -
biometrical journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.108
H-Index - 63
eISSN - 1521-4036
pISSN - 0323-3847
DOI - 10.1002/bimj.201100041
Subject(s) - joint (building) , psychology , computational neuroscience , computer science , neuroscience , econometrics , cognitive psychology , data science , mathematics , engineering , architectural engineering
This paper is motivated from the analysis of neuroscience data in a study of neural and muscular mechanisms of muscle fatigue. Multidimensional outcomes of different natures were obtained simultaneously from multiple modalities, including handgrip force, electromyography (EMG), and functional magnetic resonance imaging (fMRI). We first study individual modeling of the univariate response depending on its nature. A mixed‐effects beta model and a mixed‐effects simplex model are compared for modeling the force/EMG percentages. A mixed‐effects negative‐binomial model is proposed for modeling the fMRI counts. Then, I present a joint modeling approach to model the multidimensional outcomes together, which allows us to not only estimate the covariate effects but also to evaluate the strength of association among the multiple responses from different modalities. A simulation study is conducted to quantify the possible benefits by the new approaches in finite sample situations. Finally, the analysis of the fatigue data is illustrated with the use of the proposed methods.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here